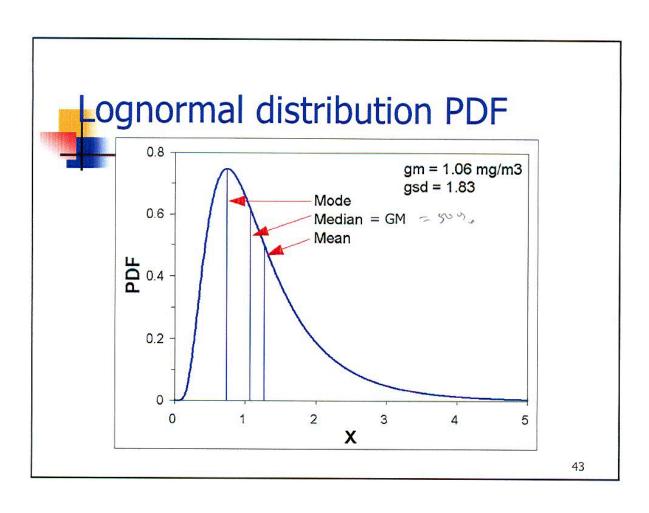
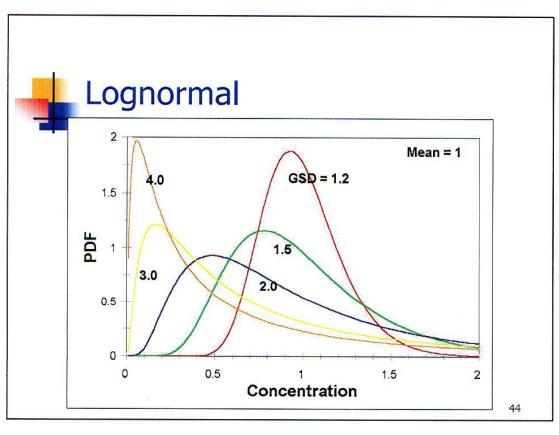
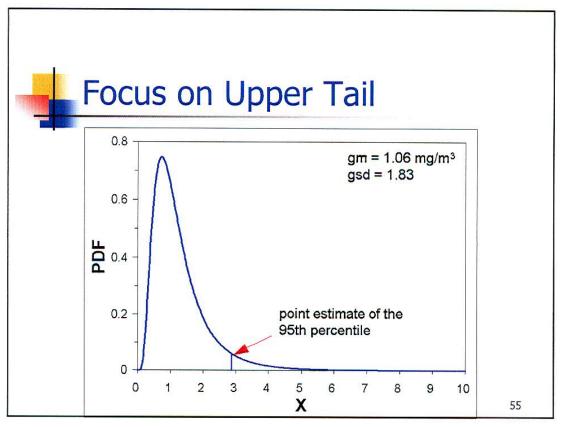

Exposure Assessment

Chapter 9, 3rd Edition OEEC&M (Chapter 6 of 2nd Edition)


- IH effectiveness goal is to ensure that no worker has unacceptable exposures
- Often there is too little data on which to base judgment
- How often is it acceptable to be wrong?
 - o If 5%, then use 95% confidence intervals.
- What are the consequences of the overexposure?
 - Loss of life, premature death, illness, then 0%
- Control Banding
 - An approach to reduce risk with few samples to base our judgment
 - Using the limited data, estimate the exposure category which is linked with recommended controls or action to be taken


AIHA Control Banding


Exposure Category (%OEL)	Recommended Actions or Controls
0 (<1% of OEL)	No action
1 (<10% of OEL)	General hazard communication
2 (10<50% of OEL)	Add chemical and process specific hazard
	communication
3 (50-100% of OEL)	Add medical surveillance, work practices, monitoring
4 (>100% of OEL)	Add PPE, respirators, engineering controls, work
	practice controls
Multiples of OEL	Immediate action, prevent access, engineering controls, shut down

- OSHA calculates the 95% CI for the mean, if LCL > PEL \rightarrow cite
- If UCL < PEL, compliance, but consider the % of time the standard is exceeded, it may not be acceptable, depending on the agent and the related consequences
- AIHA guidance
 - Ensure that no worker has unacceptable exposure
 - Lognormal distribution
 - Use the 95th percentile of the sample distribution
 - o Calculate the 95% CI for the 95th percentile of the sample distribution
 - Use the Upper Tolerance Limit (UTL), 95% UCL of the 95th percentile to assign the exposure category
 - If the UTL or 95% UCL is less than the OEL, then we can say with at least 95% confidence that the 95th percentile is less than the OEL
 - LogNormal2 and IHSTAT
 - Rules of thumb for eyeballing exposure data
 - K values, depend on GSD
 - 2 for GSD of @ 1.5
 - 4 for GSD of @ 2.3
 - 6 for GSD of @ 3.0
 - o IH DIG, Industrial Hygiene Data Interpretation Game

Upper Percentile (e.g., 95th percentile)

- Concept
 - Calculate the 95% upper confidence interval for the 95th percentile statistic (upper tolerance limit)
- Application
 - 95%UCL can be used to test the following hypotheses:
 - H_o: 95th percentile ≥ OEL
 - H_a: 95th percentile < OEL
- Interpretation
 - If the 95%UCL is less than the OEL, then we can say that we are at least 95% confident that the true 95th percentile is less than the OEL

95%UCL for the 95th Percentile

- Procedure:
 - Calculate the gm and gsd
 - Using n, read the UCL K-value from the appropriate table
 - γ = confidence level, e.g., 0.95
 - p = proportion, e.g., 0.95
 - n = sample size
 - Using gm, gsd, and k, calculate the 95%UCL
 - $\overline{y} = \ln(gm)$

$$95\%UCL(\hat{X}_{0.95}) = \exp(\bar{y} + K_{\gamma,p,n} \cdot s_y)$$

	Multiple of GM (median)	
TYNE GSD	$X_p = 95^{th}$ percentile	
	$Z_p = 1.645$	
1.5	1.95	
2.0	3.13	
2.5	4.51	
3.0	6.09	

64

R.O.T. for Estimating the 95th Percentile

- If n is small (i.e., <6) and one or more meas. > OEL, then decision = Category 4.
- 2. Estimate median (use it as a surrogate of the calculated sample GM):
 - Sort the data
 - Estimate the median
 - middle value if n is odd
 - average of two middle values if n is even
- 3. Multiply the median by 2, 4, and 6
 - The results comprise an *approximate* low, middle, and high estimate of $X_{0.95}$.

Rule-of-thumb Workshop (assume OEL=100)

A.
$$X = \{18, 85, 8, 9, 23, 21\}$$

B.
$$X = \{9\}$$

C.
$$X = \{16, 31, 19, 24\}$$

D.
$$X = \{71\}$$

E.
$$X = \{6, 4, 1, 4\}$$

F.
$$X = \{19, 38, 107, 68, 11, 54\}$$

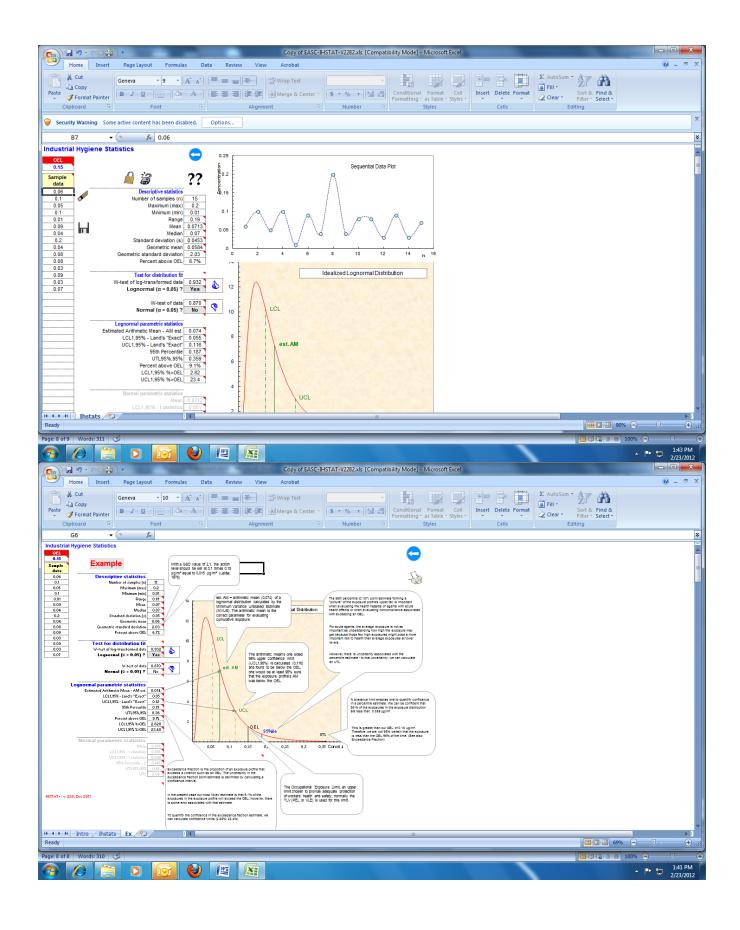
G.
$$X = \{18, 23, 11\}$$

H.
$$X = \{8, 15, 37, 22, 26, 53\}$$

For each dataset, determine the appropriate Exposure Category – 1, 2, 3, or 4 – using the above Rule-of-thumb.

Rule of Thumb Worksheet

Data Set	Data	Median	2x	4x	6x	Likely Category (1-4)
Α	18, 85, 8, 9, 23, 21					
В	9					
С	16, 31, 19, 24					
D	71			- 800		
E	6, 4, 1, 4					
F	19, 38, 107, 68, 11, 54					
G	18, 23, 11					
Н	8, 15, 37, 22, 26, 53					


67

Rule of Thumb Worksheet								
Data Set	Data	Median	2x	4x	6x	Likely Category (1-4)		
Α	8, 9, 18, 21, 23, 85	19.5	39	78	117	er 6		
В	9	9	18	36	54	103		
С	16, 19, 24 , 31	21.5	43	86	129			
D	71	71	142	284	426			
Е	1, 4, 4, 6	4	8	16	24	£ 4		
F	11, 19, 38, 54, 68, 107	46	92	184	276	*		
G	11, 18, 23	18	36	72	108			
Н	8, 15, 22, 26, 37, 53	24	48	96	144	Şa ıı		
						68		

Analyze data sets A, C, F and H using IHSTAT

IHSTAT

- Note the Security Warning: some active content has been disabled
- Click Options, then click the radial button to enable content, then click OK
- Click on the IHSTAT worksheet tab or click on the arrow
- To display the descriptions of parameters and charts click on ??
- Go back to IHSTAT
- Change the OEL
- Insert sample data
- View the **Descriptive Statistics**
- What are the values for the:
 - o Mean
 - Standard Deviation
 - o 95% CI for the mean
 - o Upper Tolerance Limit?
- Does the data fit a normal or log-normal distribution?
- What are the Exposure Category and Control Band?

